مقایسه کارایی روش های شبکه عصبی و سری های زمانی در پیش بینی سطح آب زیرزمینی (مطالعه موردی: زیرحوزه بختگان استان فارس)

نویسندگان: ثبت نشده
چکیده مقاله:

این مقاله چکیده ندارد

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

متن کامل

کاربرد مدل شبکه عصبی- موجک برای پیش بینی ویژگی های غیرایستا و غیرخطی سری زمانی تراز آب زیرزمینی

سفره ‏های آب زیرزمینی غالباً به عنوان سیستم ‏هایی با ویژگی ‏های غیرایستا و غیرخطی شناخته می ‏شوند. مدل‏ سازی این سیستم ‏ها و پیش ‏بینی حالت ‏های آینده آن ‏ها نیازمند تشخیص این ویژگی‏ های بنیادی است. اخیراً، آنالیز موجک به دلیل توانایی آن در رمزگشایی ویژگی‏ های اشاره‏ شده، به طور گسترده ‏ای در زمینه پیش ‏بینی سری‏ های زمانی هیدرولوژیکی مورد استفاده قرار گرفته ‏است. در این مقاله توانایی مدل ترکیبی ...

متن کامل

مقایسه روش های زمین آمار و شبکه عصبی مصنوعی در تخمین سطح آب زیرزمینی(مطالعه موردی: دشت نورآباد، استان لرستان)

زمینه و هدف: در بررسی مسایل ژئوهیدرولوژى، تغییرات سطح ایستابى از اهمیت بسیار بالایی برخوردار است. بنابراین تحقیق و پژوهش در تخمین نقاط فاقد اطلاعات ضروری می باشد. روش بررسی: یکی از روش های مهم در برآورد سطح ایستابی آب های زیرزمینی درون یابی است. طى چند دهه اخیر به دلیل وجود همبستگی مکانی بین مقادیریک متغیر در یک ناحیه مبانى علم زمین آمار  به خوبى گسترش یافته و توانایی هاى این شاخه از آمار در بر...

متن کامل

مقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران

     با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به  مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی  زمانی1371:1 تا 1385:11 بوده و  از شر...

متن کامل

مقایسه کارایی مدل شبکه عصبی مصنوعی، سری زمانی و مدل ترکیبی ANN-ARIMA در مدلسازی و پیش‌بینی شاخص منبع آب زیرزمینی (GRI) (مطالعه موردی: جنوب استان قزوین)

خشکسالی آب زیرزمینی یکی از انواع خشکسالی است که در اثر تغذیه ناکافی مخازن سفره‌های آب زیرزمینی بوجود آمده و شاخص منبع آب زیرزمینی (GRI) به عنوان روشی برای بیان وضعیت سطح آب زیرزمینی محسوب می‌شود. تاکنون روش‌ها و مدل‌های مختلفی برای پیش‌بینی و مدل‌سازی این پدیده ارائه شده است اما از آنجا که انتخاب یک مدل مناسب کار مشکلی می‌باشد می‌توان به جای استفاده از یک مدل؛ ترکیبی از مدل‌های منفرد قابل قبول ...

متن کامل

مقایسه روش های سری زمانی و شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق مرجع (مطالعه موردی: ارومیه)

تبخیر-تعرق یکیازمؤلفه­هایمهمدرمصرفمنابعآب در بخش کشاورزیمی­باشد. لذا ارائه روشی که پیش­بینی مناسب و دقیقی از میزان تبخیر-تعرق مرجع را بدهد، می­تواند در اخذتصمیم­ بهینهبرایبرنامه­ریزی منابع آب کمککند. دراینتحقیق،روش­های سری زمانی و شبکه­های عصبی مصنوعی درپیش­بینیتبخیر-تعرق مرجع ماهانهدرایستگاهسینوپتیک ارومیهموردمقایسه قرار گرفتند. بدین منظور در گام نخست بهترین مدل سری زمانی از بین مدل­های arو ar...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 20  شماره 4

صفحات  251- 262

تاریخ انتشار 2013-09-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023